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Convex-profile inversion, introduced by S. J. Ostro and R. Connelly (1984, Icarus 57,
443-463), is reformulated, extended, and calibrated as a theory for physical interpreta-
tion of an asteroid's lightcurve and then is used to constrain the shapes of selected
asteroids. Under ideal conditions, one can obtain the asteroid's "mean cross section" C,
a convex profile equal to the average of the convex envelopes of all the surface contours
parallel to the equatorial plane. C is a unique, rigorously defined, two-dimensional
average of the three-dimensional shape and constitutes optimal extraction of shape
information from a nonopposition lightcurve. For a lightcurve obtained at opposition,
C's odd harmonics are not accessible, but one can estimate the asteroid's symmetrized
mean cross section, Cs. To convey visually the physical meaning of the mean cross
sections, we show C and Cs calculated numerically for a regular convex shape and for an
irregular, nonconvex shape. The ideal conditions for estimating C from a lightcurve are
Condition GEO, that the scattering is uniform and geometric; Condition EVIG, that the
viewing-illumination geometry is equatorial; Condition CONVEX, that all of the aster-
oid's surface contours parallel to the equatorial plane are convex; and Condition
PHASE, that the solar phase angle 4 * 0. Condition CONVEX is irrelevant for estima-
tion of Cs. Definition of a rotation- and scale-invariant measure of the distance, A2,
between two profiles permits quantitative comparison of the profiles' shapes. Useful
descriptors of a profile's shape are its noncircularity, 12c, defined as the distance of the
profile from a circle, and the ratio ,6* of the maximum and minimum values of the
profile's breadth function 13(0), where 0 is rotational phase. C and Cs have identical
breadth functions. At opposition, under Conditions EVIG and GEO, (i) the lightcurve is
equal to C's breadth function, and (ii) ,8* = 10° m, where Am is the lightcurve peak-to-
valley amplitude in magnitudes; this is the only situation where Am has a unique physical
interpretation. An estimate C of C (or Cs of Cs) can be distorted if the applicable ideal
conditions are violated. We present results of simulations designed to calibrate the na-
ture, severity, and predictability of such systematic error. Distortion introduced by viola-
tion of Condition EVIG depends on 4, on the asteroid-centered declinations Ss and SE of
the Sun and Earth, and on the asteroid's three-dimensional shape. Violations of Condi-
tion EVIG on the order of 100 appear to have little effect for convex, axisymmetric

Current address: Philips ECG, 50 Johnston St., Seneca Falls, NY 13148.

30
0019-1035/88 $3.00
Copyright e 1988 by Academic Press, Inc.
All nghts of reproduction in any form reserved.



ASTEROID LIGHTCURVE INVERSION

shapes. Errors arising from violation of Condition GEO have been studied by generating
lightcurves for model asteroids having known mean cross sections and obeying Hapke's
photometric function, inverting the lightcurves, and comparing C to C. The distance of C
from C depends on k and rarely is negligible, but values of 12, and ,8* for C resemble
those of C rather closely for a range of solar phase angles (i - 20° ± 100) generally
accessible for most asteroids. Opportunities for reliable estimation of Cs far outnumber
those for C. We have examined how lightcurve noise and rotational-phase sampling rate
propagate into statistical error in C and offer guidelines for acquisition of lightcurves
targeted for convex-profile inversion. Estimates of C and/or Cs are presented for selected
asteroids, along with profile shape descriptors and goodness-of-fit statistics for the in-
verted lightcurves. For 15 Eunomia and 19 Fortuna, we calculate weighted estimates of C
from lightcurves taken at different solar phase angles. C 1988 Academic Press, Inc.

1. INTRODUCTION

One of an asteroid's most fundamental
attributes is its shape, and lightcurves pro-
vide the only source of shape information
for most asteroids. However, the functional
form of a lightcurve is determined by the
viewing/illumination geometry and the as-
teroid's light-scattering properties as well
as by its shape, and lightcurves offer less
powerful shape constraints than do tech-
niques that resolve asteroids spatially. Os-
tro and Connelly (1984) introduced a new
approach called convex-profile inversion to
using a lightcurve to constrain an asteroid's
shape, demonstrating that any lightcurve
can be inverted to yield a convex profile
that, under certain ideal conditions, repre-
sents a certain two-dimensional average of
the asteroid's three-dimensional shape. The
ideal conditions include geometric scatter-
ing and equatorial viewing/illumination ge-
ometry and will rarely be satisfied exactly
for actual lightcurves, so the derived shape
constraints will usually contain systematic
error.

Therefore, while convex-profile inver-
sion can help to optimize extraction of
shape information, proper application of
the technique demands an understanding of
systematic (as well as statistical) sources of
uncertainty. Two objectives of this paper
are to explore these effects at some length
and then, with a better feel for error
sources, to use convex-profile inversion to
constrain the shapes of selected asteroids.
A third, more general, objective is to

present a comprehensive conceptual foun-
dation for the physical interpretation of
asteroid lightcurves. This foundation en-
compasses calibration and application of
convex-profile inversion as well as estab-
lished principles from the oldest lightcurve
literature, so let us begin with a review of
essential background material in which we
emphasize the progression of logic which
has led to convex-profile inversion.

11. HISTORICAL BACKGROUND AND REVIEW
OF RECENT WORK

A general statement of the lightcurve in-
version problem is "Given that a lightcurve
is determined by asteroid shape, surface
scattering properties, and viewing/illumina-
tion geometry, how, if at all, can we isolate
these effects and obtain physically interest-
ing information about the asteroid?" In a
classic paper, H. N. Russell (1906) offered
the first analysis of this problem, investigat-
ing in fine detail the information content of
lightcurves taken close to opposition, i.e.,
with the solar phase angle 0 0°. He sum-
marized his results as follows: If an asteroid
has been observed at opposition in all parts
of its orbit:

(RI) "We can determine by inspection of
its light-curves whether or not they can be
accounted for by its rotation alone, and, if
so, whether the asteroid (a) has an absorb-
ing atmosphere, (b) is not of a convex2

2 An object is convex if the straight line connecting
any two points on the boundary is inside the boundary.
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form, (c) has a spotted surface, or whether
these hypotheses are unnecessary."

(R2) "It is always possible (theoretically)
to determine the position of the asteroid's
equator, (except that the sign of the inclina-
tion remains unknown)." That is, we can
find the line of equinoxes, of intersection
between the equatorial and orbital planes,
and the size of the angle between those
planes.

(R3) "It is quite impossible to determine
the [three-dimensional] shape of the aster-
oid. If any continuous convex form is possi-
ble, all such forms are possible."

(R4) "In this case we may assume any
such form, and then determine a distribu-
tion of brightness on its surface which will
account for the observed light-curves. This
can usually be done in an infinite variety of
ways. "

(R5) "The consideration of the light-
curve of a planet at phases remote from op-
position may aid in determining the mark-
ings on its surface, but cannot help us find
its [three-dimensional] shape."

Despite Russell's skepticism toward
prospects for using lightcurves to find an
asteroid's three-dimensional shape, he did
describe how to test certain hypotheses
about shape, scattering law, and albedo dis-
tribution. For example, suppose we have
found the asteroid's line of equinoxes (R2)
and obtained an "equatorial" opposition
lightcurve. Russell showed that such a
lightcurve's Fourier series cannot have odd
harmonics higher than the first if the scat-
tering is geometric, 3 regardless of the al-
bedo distribution; it cannot have any odd
harmonics if that distribution is uniform.
He also showed that if two opposition light-
curves obtained in opposite directions are
different, then either the scattering is not
geometric or the albedo is not uniform, or
both; if the difference is not a sinusoid, then

I The brightness of a geometrically scattering sur-
face element is proportional to the element's pro-
jected, visible, illuminated area.

the asteroid's shape is not convex. How-
ever, as Russell proved, it is impossible to
separate the effects of albedo variation
from effects of surface curvature, so nei-
ther the light-scattering properties nor the
shape can be modeled uniquely. Hence,
apart from testing the convexity hypothe-
sis, the utility of lightcurves as sources of
shape information seemed virtually nil.

More than half a century after Russell's
treatise, photoelectric photometry and po-
larimetry dramatically changed the empiri-
cal setting for lightcurve interpretation,
demonstrating that with a few notable ex-
ceptions the forms of most broadband opti-
cal lightcurves seem less sensitive to sur-
face heterogeneity than to gross shape.
Moreover, laboratory experiments and the-
oretical studies disclosed that geometric
scattering is likely to be a good approxima-
tion for asteroids viewed close to opposi-
tion (e.g., French and Veverka 1983) but
that the validity of this approximation dete-
riorates with increasing solar phase angle.
Thus, in the absence of evidence to the con-
trary, the premise that the scattering is uni-
form and geometric has been the starting
point for nearly all efforts to interpret light-
curves physically (e.g., Burns and Tedesco
1979, Harris 1986).

Many researchers further constrain the
lightcurve inversion problem by assuming a
simple a priori shape. The usual choice is a
triaxial ellipsoid, whose shape is com-
pletely described by the ratios bla and cla,
with a - b - c the semiaxis lengths. The
equatorial opposition lightcurve of a geo-
metrically scattering ellipsoid (GSE) has
brightness extrema in the ratio alb =
100 4Am, where Am is the peak-to-valley
lightcurve amplitude in magnitudes. A com-
mon practice is to take the maximum ob-
served value of Am as a measure of an as-
teroid's elongation.

Because GSE lightcurves are easy to cal-
culate, they provide a convenient tool for
error-propagation studies (Sections III and
IV below) and for pole-direction determina-
tions (e.g., Zappala and Knezevi6 1984,
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Scaltriti et al. 1978). However, for the pur-
pose of extracting information about an as-
teroid's shape from its lightcurve, the GSE
assumption begs the question. After all, el-
lipsoids are a subset of axisymmetric
shapes, which in turn constitute a small
subset of convex shapes and an even
smaller subset of plausible asteroid shapes.
The GSE assumption forces one to ignore
much of the lightcurve's information con-
tent, imposing a very particular Fourier
structure on any model lightcurve. As
shown by Russell and noted above, the
equatorial, opposition lightcurve of any ob-
ject with a geometric scattering law will
have no odd harmonics higher than the
first. If the asteroid's surface is symmetric
about the spin axis then the first harmonic
will vanish, leaving only even harmonics in
the lightcurve, regardless of viewing as-
pect. But if, additionally, the asteroid is an
ellipsoid, the lightcurve's Fourier structure
will be even more restricted: As shown by
Connelly and Ostro (1984), the square of
the opposition lightcurve of any geometri-
cally scattering ellipsoid has no harmonics
except for 0 and 2, regardless of viewing
aspect.

How should we interpret the equatorial
opposition lightcurve of a uniform, geomet-
rically scattering asteroid which might (by
the Fourier test just mentioned) be non-
ellipsoidal? More generally, what can any
given lightcurve tell us about an asteroid's
shape? Russell wrote that if the scattering
is uniform and geometric, then we might
"seek to account for the light-changes by
the form of the surface alone. But this leads
to difficult problems in the theory of sur-
faces, and will not be attempted here." He
pointed out that some of these problems
arise because odd harmonics in the expan-
sion of a surface's curvature function will
be irretrievable from an opposition light-
curve. He also suggested that the odd har-
monics "may sometimes be determined
from nonopposition lightcurves." These
critical issues were not pursued further for
nearly 75 years.

Convex-Profile Inversion: Averages of
Asteroid Shapes

Ostro and Connelly (1984) demonstrated
that whereas Russell's paper is valid, and
indeed it is not possible to find an asteroid's
three-dimensional shape from disk-inte-
grated measurements, it is possible to ex-
tract shape constraints that are meaningful
and that exploit more of the information in
the lightcurve. Still, shape constraints from
disk-integrated measurements are neces-
sarily much less informative than, say, a
stellar-occultation profile, which is a two-
dimensional projection of the asteroid's
three-dimensional shape. Given an aster-
oid's lightcurve, the best constraint we can
obtain is not a projection of the asteroid's
three-dimensional shape, but rather a cer-
tain two-dimensional average of that shape.

Ostro and Connelly (1984) defined an as-
teroid's mean cross section C as the aver-
age of all cross sections C(z) cut by planes a
distance z above the asteroid's equatorial
plane. That definition of the C(z) left C un-
defined unless all the C(z) are convex.
Here, to remedy this situation, we define
the C(z) as the convex envelopes, or hulls,
on the actual surface contours. With this
revision, C is now clearly defined for any
asteroid.

C and all the C(z) are convex profiles or,
in the language of geometry, convex sets.
We use underlined, uppercase, italic letters
to denote such quantities. As discussed in
detail by Ostro and Connelly (1984) and re-
iterated below, a convex profile can be rep-
resented by a radius-of-curvature function
or by that function's Fourier series. Dele-
tion of a profile's odd harmonics yields that
profile's symmetrization. For example, an
asteroid's symmetrized mean cross section
Cs has the same even harmonics as C but no
odd harmonics.

Figure 1 shows C and Cs for two three-
dimensional, styrofoam models, calculated
by applying formulas in Appendix A of Os-
tro and Connelly (1984) to measurements of
photographs of those objects. Several pho-

33



OSTRO, CONNELLY, AND DOROGI

FIG. 1. Values of the mean cross section for (a) an egg-shaped object and (b) an irregular, nonconvex
object.

tographs of each model are shown to con-
vey visually the relation between three-di-
mensional shape and the two-dimensional
averages accessible from lightcurves.

There are four ideal conditions for esti-
mating C from a lightcurve:

Condition GEO: The scattering is uni-
form and geometric.

Condition EVIG: The viewing-illumina-
tion geometry is equatorial, that is, the as-
teroid-centered declinations 8s and 8E of the
Sun and Earth are zero.

Condition CONVEX: All of the aster-
oid's surface contours parallel to the equa-
torial plane are convex.

Condition PHASE: The solar phase angle
4 is known and does not equal 0° or 1800.

The last condition states that we cannot
find C from an opposition lightcurve and
arises for the following reason. Each coeffi-
cient in the Fourier series for C's radius-of-
curvature function is found from the corre-
sponding coefficient in the Fourier series
for the lightcurve. However, we cannot use
an opposition lightcurve to find C's odd
harmonics because, as Russell showed, an
opposition lightcurve has no odd harmonics
if Conditions GEO and EVIG are satisfied.

(If C contains odd harmonics, then light-
curve odd harmonics can be introduced
away from opposition via the rotational-
phase dependence of the fraction of the vis-
ible projected area that is illuminated. At
opposition, no shadows are visible, so that
fraction is unity regardless of rotational
phase, and the odd harmonics vanish.)

Although we cannot estimate C from an
opposition lightcurve, we can estimate C's
even harmonics and hence its symmetriza-
tion, Cs. Estimation of Cs from opposition
lightcurves is less "burdened" by ideal
conditions than is estimation of C from non-
opposition lightcurves, for three reasons.
First, for estimation of C, Condition
CONVEX ensures the absence of visible
shadows between the limb and the termina-
tor, which might distort determination of C.
However, at opposition, there are no visi-
ble shadows, so Condition CONVEX is ir-
relevant and C, can be estimated reliably as
long as Conditions GEO and EVIG are sat-
isfied.

Second, Conditions GEO and EVIG are
satisfied more easily" for opposition light-

curves than for nonopposition lightcurves.
As noted above, the geometric scattering
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approximation is more valid at opposition
than at large solar phase angles. Condition
EVIG can be satisfied at large phase angles
only if the pole lies nearly normal to the
Earth-asteroid-Sun plane, but is satisfied
at any opposition occurring when the aster-
oid is at an equinox, i.e., with the pole nor-
mal to the Earth-asteroid line. Hence, ge-
ometry dictates that opportunities to
estimate Cs far outnumber opportunities to
estimate C.

Third, to assess how close the viewing/
illumination geometry is to equatorial for a
given nonopposition lightcurve, one must
know the asteroid's pole direction; for an
opposition lightcurve it is sufficient to know
just the location of the asteroid's line of
equinoxes.

Ostro and Connelly (1984) showed that
calculation of a mean-cross-section esti-
mate C from a lightcurve can be ap-
proached by weighted-least-squares optimi-
zation subject to inequality constraints. In
this paper, we use the term "convex-profile
inversion" to denote our theory for the in-
formation content of lightcurves as well as
the computational technique for estimating
mean cross sections.

None of the first three ideal conditions
are likely to be satisfied exactly for an ac-
tual lightcurve. However, the important is-
sue is the extent to which their violation
degrades the accuracy of a mean-cross-
section estimate. As noted above, key ob-
jectives of this paper are to calibrate con-
vex-profile inversion's sensitivity to sys-
tematic and statistical sources of error and
then to use convex-profile inversion to con-
strain the shapes of selected asteroids. In
the next section we briefly review the math-
ematics of convex-profile inversion and in-
troduce techniques for describing, compar-
ing, and manipulating profiles. In Section
IV we explore the manner in which depar-
ture from ideal conditions makes C deviate
from C. We have tried to maintain at least a
modicum of realism in evaluating sources
of systematic error. For example, special
attention is paid to the distortion caused by

nongeometric scattering, and in calibrating
this distortion we have relied heavily on
Hapke's (1981, 1984, 1986) theory for a re-
alistic description of the optical properties
of asteroid surfaces. On the other hand, our
calibrations have not been exhaustive; we
have not examined coupled effects due to
simultaneous violation of two or more ideal
conditions, and we have simplified as much
as possible our modeling of three-dimen-
sional shapes. Nonetheless, our work does
provide a guide to both the power and the
limitations of convex-profile inversion. We
argue that systematic errors in estimation
of C and Cs are not insurmountable and that
their severity often can be assessed a priori
and/or a posteriori.

In Section V we briefly examine how
noise, sampling rate, and rotational phase
coverage propagate into statistical error in
mean-cross-section estimation. Then, hav-
ing calibrated various sources of uncer-
tainty in convex-profile inversion, we apply
it in Section VI to an assortment of asteroid
lightcurves. Finally we summarize all our
results and offer strategies for future efforts
in the acquisition and physical interpreta-
tion of asteroid lightcurves.

111. CONVEX-PROFILE INVERSION
MATHEMATICS

The power of convex-profile inversion
rests on the fact that when the ideal condi-
tions hold, the three-dimensional lightcurve
inversion problem, which cannot be solved
uniquely, collapses into a two-dimensional
problem that can. The geometry of the two-
dimensional problem is shown in Fig. 2,
drawn for 0 = 30°. The asteroid is a convex
profile whose brightness 1(0) at rotational
phase 0 is proportional to the orthogonal
projection toward Earth of the visible, illu-
minated portion of the profile.

At opposition, the visible portion of the
profile is fully illuminated; the projection of
this curve is called the profile's width, or
"breadth," in the direction of Earth, and
the lightcurve is proportional to the breadth
function 83(0). Unless this function is con-
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P(360- -1 i

......... 0 .... X

FIG. 2. Geometry for two-dimensional asteroid light-
curve inversion. The asteroid is a convex profile rotat-
ing clockwise and is shown at rotational phase 6 = 00.
The solar phase angle 4 is indicated, as are the aster-
oid's illuminated (solid) and unilluminated (dotted)
portions. The asteroid's scattering law is geometric;
i.e., the observed brightness is proportional to the or-
thogonal projection toward Earth of the visible, illumi-
nated length 1(6). The point P(O) is on the receding
(left-hand) limb and the outward normal in at P(6)
points in the positive x direction when the rotational
phase is 0. Reproduction of Fig. I of Ostro and Con-
nelly (1984).

or as

A(0) = E Ce inl,
n = -

where
- (an + ibJ)/2.

Define P(0) - [x(0), y(0)] as the point on the
curve that would be on the receding limb if
the asteroid were at rotational phase 0. In
this normal-angle parameterization, the
outward normal to the curve at P(0) points
in the positive x direction at rotational
phase 0. Let r(0) = dsIdO be the radius of
curvature of the profile at P(0), where I1r(0)
is the curvature at P(0) and s = s(0) is arc
length defined by

(dsldO)2 = (dx/dO)2 + (dy/do)2 .

Then

and

x(0) = x(O) - f r(t) sin t dt

y(0) = y(O) + r(t) cos t dt.

stant, it is periodic with a period equal to
1800 or an integral fraction thereof-the
lightcurve has no odd harmonics. (This is
why most asteroid lightcurves, which are
rarely obtained very far from opposition,
are dominated by even harmonics.) The
second harmonic dominates the higher
even harmonics unless the profile possesses
symmetry akin to that of regular convex
polygons, in which case the lightcurve's
fundamental can be a higher even har-
monic. (Asteroids are unlikely to have such
symmetry, and this is why most asteroid
lightcurves are dominated by the second
harmonic.)

The lightcurve's Fourier series can be ex-
pressed either as

I(W) - A (a, cos nO + b, sin nO)
n=O

Ostro and Connelly (1984) define the
Fourier series for the radius of curvature
function as

r(0) = E dnei10

and show that the profile can be found from
the lightcurve because

d0 = C,/vn (1)

where vn is a known function (Fig. 3) of &.
The profile will be closed only if d+, = 0 and
it will be convex only if a set of N linear
constraints, r(2F-k/N) > 0 for 1 c k c N,
are satisfied. In practice, convex-profile in-
version finds that profile C which provides
the least-squares estimator for C by finding
that vector x of Fourier coefficients that
satisfies the constraints and is as close as
possible to the (unconstrained) vector x of
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1 _ 6 7

0

180° 0° 180°
Solar Phase Angle, S

FIG. 3. The function v,(j), discussed in the text, is
plotted vs solar phase angle ( for values of the har-
monic index n from 2 through 7. The following expres-
sions for v, are valid for n r + 1; see Section II.A of
Ostro and Connelly (1984). If 0 c <P < 7r, then 2uv -
ei(- 4)('-°/(n - I) - ei(e+ )(-0'/(n + 1) -2/(n 2 - 1). If
-ar < f) c 0, then 2(n2 - 1)v. = (n - l)e i('+l)0 - (n +
1)e i(- 1)° + 2(-I)e+l.

Fourier coefficients fit to the data. The
lightcurves derived from x and x are, in vec-
tor notation, y and 5.
Truncation of Fourier Series

As discussed by Ostro and Connelly
(1984), truncation of Fourier series limits
the fidelity with which convex-profile inver-
sion can reproduce profiles with flat sides
or sharp corners. We employ Fourier series
containing 10 harmonics throughout this
paper; series this long adequately represent
all lightcurves discussed herein. We note
that lightcurves with significant energy in
harmonics higher than 10 are rare, and we
speculate that the mean cross sections of
actual asteroids generally lack extremely
flat sides and very sharp corners.

Sign of the Solar Phase Angle
As shown in Fig. 2, the solar phase angle

is measured from the Earth direction E to
the Sun direction S in the same rotational

sense as the asteroid's rotation. We adhere
to the semantic convention that 4) satisfies
00 c 141 - 180°, so 4 # 0 is positive if the
asteroid rotates through 141 from E to S or
negative if it rotates through j4) from S to E.
For example, in Fig. 2, if the directions of
the Earth and Sun were interchanged, 4
would equal -300. Clearly, for any given
Sun-Earth-asteroid geometry, the sign of
4 is determined by the sense of rotation.
Thus convex-profile inversion of a nonop-
position lightcurve is sensitive to the sense
of rotation, and using the wrong sign of 4
can distort C; see Fig. 3 of Ostro and Con-
nelly (1984). However, we suspect that if
prior knowledge of an asteroid's pole direc-
tion is adequate to guarantee that the aster-
oid-centered declinations of the Sun and
Earth are both close to zero for a given non-
opposition lightcurve, then in many cases
the data (lightcurve, radar, or whatever)
used to constrain the pole direction will be
adequate to permit reliable determination
of rotation sense, too.

Quantitative Description of Profiles
We often will wish to quantify relation-

ships between profiles to supplement verbal
descriptions and subjective comparisons.
Following Richard and Hemami (1974) and
Sato and Honda (1983), we define the dis-
tance fl between any two profiles PI and P2
as

Q = 10 min ld1 d1o - Odd 2d 0 ,

where dj is the vector of complex Fourier
coefficients in the expansion of Pj's radius-
of-curvature function; djo is the constant, or
zero-harmonic term, in that expansion; and
the diagonal matrix E rotates d2, by einO.
This distance measure is rotation invariant
and scale invariant.

The meaning of il can be visualized as
follows. If our Fourier series are truncated
to M harmonics, dj will have 2M + 1 ele-
ments, so di and d2 define two points in a
(2M + 1)-dimensional space, and it is easy
to calculate the distance between them.
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However, dj determines P i's circumference
(i.e., its size) and rotational orientation as
well as its shape. Therefore, we define n as
the distance between d, and d2 when PI and
P2 are scaled to the same size and rotated as
much into alignment with each other as
possible.

In describing interprofile distances, we
will use the following scale:
Distance (fl)

C2
3-4
5-6
7-8
,!9

Verbal description

Nearly identical
Similar but not the same
Different
Very different
Radically different

We also define a profile's "noncircular-
ity" fc as its distance from a circle, and a
profile's breadth ratio ,8* - 1 as the ratio of
the profile's maximum breadth to its mini-
mum breadth. Figure 4 plots fc vs /8* for
ellipses and shows the locations of various
profiles in this two-parameter space, as well
as some interprofile distances. Table I lists
symbols used frequently in this paper.

14 l l
13 - 7 3130
12 A

C: 9 43
10 9.2

I 9 - 9.3/ 6.4

7.8 50 0 76
4.

Z 4
z 3i

TABLE I

GLOSSARY OF SYMBOLS

C Mean cross section
C, Symmetrized mean cross section

C Estimate of C

C, Estimate of C,
j Solar phase angle
Am Lightcurve peak-to-valley amplitude
5E Asteroid-centered declination of Earth
5s Asteroid-centered declination of the Sun
j3* Breadth ratio; ratio of a profile's maximum and

minimum widths
( Distance between two profiles
Dc Noncircularity; distance of a profile from a

circle
nE Error distance, between C and C (or between

C, and C)
f3s Symmetrization distance, between C and C, (or

between C and CQ)

IV. SENSITIVITY TO DEPARTURE FROM
IDEAL CONDITIONS

A. Violation of Condition EVIG
As a first step in studying how departures

from ideal conditions can introduce system-

1.6 1.8 2.0 2.2 2.4
BREADTH RATIO, d*

FIG. 4. Shape descriptors for convex profiles. Each profile's noncircularity S1c and breadth ratio /*
is indicated by the profile's position. Note the locus of ellipses. The interprofile distance Q, defined in
the text, is indicated for selected pairs of profiles.
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atic error in C or C we examine effects of
nonequatorial viewing/illumination geome-
try.,For any given asteroid, the proximity
of C to C for a lightcurve obtained when
SE 0 or Ss # 0 will be a function of 6 E, 5S,
and t. We have studied this particular
source of systematic error by inverting
lightcurves generated analytically for geo-
metrically scattering ellipsoids within the
parameter space:

100 < < 80°
0.2 < b/a • 0.4

0.05 < c/a c bla.
For given values of b/a, c/a, and 4, the
field of possible values of NE and Ss is con-
veniently displayed in a plot of Ss vs (6 E -
5s). Figure 5 shows several contours of con-
stant BE and of constant Ss in this plane.
Note that the Earth is north of the equator
outside the stippled zone. The figure shows
results of our simulations for illustrative
two-dimensional cuts through the five-di-
mensional parameter space.

Under Condition EVIG (at thez origin of
the figures, where BE = 5S = 0), C is nearly
indistinguishable from the asteroid's mean
cross section C, which is an ellipse with
axis ratio alb. However, under extremely
nonideal viewing/illumination geometry,
C is not necessarily elliptical and has breadth
extrema not necessarily in the ratio bla.
The distortion in each C in Fig. 5 is quan-
tified by the "error distance" QE between
C and C. It worsens with increasing 0, alb,
or a/c and is most severe when 15EI,
I5sl > 10° and Ss is between 00 and 6 E. The
distortion is minimal when either 16EI, 6S <
100 or SE is between 0° and -6s, i.e., in the
triangular region labeled MIN in Fig. 5.
Outside those regions, violation of Condi-
tion EVIG often makes C more circular
than C. This result, which is consistent with
the well-known reduction in lightcurve am-
plitude with decreasing aspect angle for op-
position lightcurves of geometrically scat-
tering ellipsoids and a variety of other
shapes (Barucci and Fulchignoni 1982,

1984), arises from the constant illumination
and visibility of a polar region.

From the viewpoint of convex-profile in-
version, nonequatorial viewing/illumina-
tion geometry prevents the "clean" col-
lapse of the lightcurve inversion problem
from three dimensions to two dimensions.
It seems unlikely that many asteroids are as
long and flat as our most extreme examples,
and in this respect our figures might exag-
gerate the distortion caused by nonequato-
rial viewing/illumination geometry. On the
other hand, distortion for nonaxisymmetric
and highly irregular shapes might be much
more severe than for ellipsoids. Note that
in the minimum-distortion region in the fig-
ure, the constantly illuminated pole is not
visible and vice versa, so neither pola~r re-
gion contributes to the lightcurve. C re-
sembles C in this region because C(z) has a
constant shape for an ellipsoid, a situation
unlikely to hold for most asteroids. Hence,
even if EVIG were the only violated condi-
tion, it would probably be wise to interpret
the simulations described here as establish-
ing ,a lower bound on the systematic error
in C.

B. Violation of Condition GEO
How much is C distorted if the scattering

is nongeometric? Our strategy in answering
this question is to (i) assume that the other
ideal conditions are satisfied; (ii) generate
lightcurves for an asteroid with a known
shape and a realistic scattering law; (iii) use
convex-profile inversion to obtain an esti-
mate, C, of the asteroid's mean cross sec-
tion C; and (iv) compare C to C. For the
time being, let us also assume that the as-
teroid's three-dimensional shape is a con-
vex cylinder, that is, that C(z) is constant
and congruent with C. These assumptions
reduce the problem's dimensionality to
two, letting us treat the asteroid's surface
as a convex profile. For convenience we
model an asteroid as a convex polygon with
360 sides. The orientation and length of
each side is known, so it is easy to calculate
the asteroid's lightcurve for an arbitrary
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Earth. The field of viewing/illumination geometries is displayed in plots with Ss on the ordinate and
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the origin) for three different sets of choices for the solar phase angle 4 and the ellipsoid's axis ratios
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of Condition EVIG is minimal within the region labeled "MIN."

photometric function. (By virtue of Condi- asteroid's brightness from light reflected
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cited references, 6, and 0e are the angles of
incidence and emergence, and six parame-
ters describe the surface properties. The
parameter w is the average single-scattering
albedo. The opposition effect is described
by the parameters h and S(0); h depends on
the regolith's porosity and particle size dis-
tribution, and S(0) is the fraction of light
scattered from close to a particle's surface
at 0 = 0. Effects of macroscopic surface
roughness are parameterized by the aver-
age slope 0, measured with respect to the
mean surface, of surface facets unresolved
by the detector. Following Helfenstein and
Veverka (1987), we write the average, sin-
gle-particle, angular scattering function as

P(tk) = 1 + bleg cos d)
+ cleg(l.5 cos2 0 - 0.5).

Those authors estimated values of the six
Hapke parameters for dark, average, and
bright terrains on the Moon. In our calcula-
tions, we adopt their results for average ter-
rain: w = 0.25, h = 0.06, S(O) = 0.78, 0 =
20.60, bleg = 0.33, and clg = 0.37. Our
results are essentially insensitive to varia-
tion in these values over ranges much larger
than those spanned by their results for the
three lunar terrain classes.

For a geometric scattering law (rR = con-
stant), convex-profile inversion yields C, at
opposition and C away from opposition.
Figure 6 shows C and Cs for each, of 15
model asteroids, as well as C or C, esti-
mated from lightcurves generated under the
assumption of Hapke scattering at 0 = 00,
20, 50, 10°, 20°, 300, 50°, and 90°. The figure
also lists for each profile the breadth ratio
3*, the error distance flE from C (or Cs),
and the noncircularity flc. (The 15 model
asteroids' mean cross sections are plotted
in Fig. 4.)

Figure 7a plots flE for each object. Figure
7b plots the average value of QE for all 15
objects, the average value for the only three
objects (No. 8, 14, and 15) with negligible
energy in odd harmonics, and the average

value for the 12 remaining objects. These
figures demonstrate that the difference be-
tween C and C generally depends on the
solar phase angle. At opposition, the scat-
tering is sufficiently close to geometric that
f, is very accurately determined. (In fact,
for b less than about 100, one can estimate
the symmetrized mean cross section quite
reliably, with QE rarely as large as 5.) How-
ever, for very small phase angles (2° and 50
in the figures), OE is extremely large for all
profiles except objects No. 8, 14, and 15;
object No. 12 is an intermediate case. The
cause of the severe distortion in C at low
solar phase angles for the other 12 profiles
is evident from Fig. 3, which plots v(o,n)
and shows that for odd n, v- 0 as q- 0.
Since the basic Eq. (1) for calculating C is
n a clv,, estimation of odd harmonics

in C becomes increasingly sensitive to light-
curve noise and computational precision as
b- 0. These simulations and those pre-
sented in Section V suggest that reliable de-
termination of odd harmonics is difficult if
14.1 is less than about 50, and we will not try
to estimate C from lightcurves taken that
close to opposition. Instead, we will use
equatorial lightcurves obtained near oppo-
sition to estimate C .

As discussed earlier, Cs has the same
even harmonics as C but no odd harmonics.
C, actually tells us quite a bit about C be-
cause the breadth function of any convex
profile is independent of the profile's odd
harmonics. That is, Cs and C have the same
breadth function because they have the
same even harmonics. It is important to
note that at opposition, under the pertinent
ideal conditions (EVIG and GEO), an as-
teroid's lightcurue equals the breadth func-
tion of C, (and of C) within a multiplicative
constant. Furthermore, ,3* = 100.4Am, so the
lightcurve's amplitude is a trivial function
of /8* and thus is a valid gauge of elonga-
tion. We stress that this elongation or any
other shape-related parameter obtained
from a lightcurve pertains not to the aster-
oid's three-dimensional shape but to a two-
dimensional average of that shape.
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FIG. 6. Effects of nongeometric scattering on estimation of C and C,. Each box shows results of
simulations for a particular model "asteroid." The model's mean cross section and symmetrized mean
cross section are shown above the horizontal bar. Below the bar are estimates of those quantities from
inversion of lightcurves generated at various solar phase angles q and employing the Hapke photomet-
ric function described in the text. (C, is estimated at opposition and C is estimated at the seven nonzero
values of s.) Each profile's noncircularity Q, and breadth ratio 13* arc given. {l, is the distance
between C and C or between C, and C,.

For phase angles larger than 50, convex- tinctly nongeometric as IcI, increases,
profile inversion is increasingly "stable" thereby causing distortion in C. For phase
with respect to estimation of C's odd har- angles equal to 100, 200, 300, and 500, the
monics, but the scattering becomes dis- average value of QE is 4.1, 3.8, 4.3, and 4.7,
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with an rms dispersion within 10% of 2.0
throughout. Thus, the systematic error in
C from violation of Condition GEO tends to
"bottom out" around 200, a fortuitous cir-
cumstance in view of the inaccessibility of
main-belt asteroid lightcurves at much
larger solar phase angles.

Our simulations indicate that even for +
near 200, an estimate of C is likely to con-
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tain some systematic error. Figurers 6 and 7
suggest that the distortion in C can be
expected to be moderate for most cases,
but negligible for some small fraction of
cases and intolerably severe for a compara-
ble fraction. On the other hand, Fig. 8
shows that for (A at least as large as 200 the
noncircularity is within about _ I unit of the
asteroid's actual value and that values of 1*
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estimated for C are within 5% of C's value
of /3* for all solar phase angles. That is, the
salient characteristics of the mean cross
section are determined fairly accurately,
even when a realistic scattering law is as-
sumed.

Figure 8 also plots the ratio 100.4Am/,8*,
where 10041m is the estimate of,8* provided
by the lightcurve amplitude. Within about

10° of opposition, the lightcurve amplitude
provides a reliable estimator for the elonga-
tion of C, but overestimates the elongation
by several tens of percent for 4 as large as
200, by factors of several at 4 = 500, and by
factors of up to 10 at 4 = 900. It s~eems clear
that a value of /3* derived from C is a gauge
of C's elongation that not only is more reli-
able and more physically meaningful than
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Am, but also compensates for the so-called
phase-magnitude relation.

We have not tried to model lightcurves
for three-dimensional objects for which
C(z) is not constant. For any arbitrary
shape, C can be thought of as the sum of
potentially distorted versions of the individ-
ual C(z), where the distortion depends on
the local surface curvature and scattering

properties at each point. Our simulations
have used a realistic approach to scattering
properties but have ignored components of
curvature that are not parallel to the equa-
tor. Hence our results are generally valid
only to the extent that the curvature of sur-
face contours not parallel to the equator is
irrelevant to distortion in C. In simpler lan-
guage, we have ignored effects of polar
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FIG. 7. (a) Individual values of flE for the 15 model
asteroids in the simulations described in the text, and
(b) average values of fIE for three subsets of the model
asteroids.

darkening on the functional form of light-
curves. Nevertheless, we suggest that our
simulations with constant-C(z) shapes may
apply to physically realistic convex shapes
if Condition EVIG is satisfied, because the
weighting of the C(z) is such [Ostro and
Connelly 1984, Eq. (7) and Appendix A]
that contributions to the mean cross section
from equatorial C(z) can easily dominate
those from polar regions. This situation will
be even more pronounced for a Hapke scat-
terer than for a geometric scatterer.

C. Violation of Condition CONVEX
We have already dealt with this source of

systematic error in a de facto sense, be-
cause Hapke's theory includes effects of
roughness at scales much larger than the
observing wavelength. In other words, bias
in C due to concavities is indistinguishable,
either a priori or a posteriori, from bias due
to nongeometric (or even nonuniform) scat-
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brightness to its minimum brightness, i.e., an estimate
of ,1* derived from the lightcurve amplitude Ain. Indi-
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of unity for all 15 model asteroids, regardless of solar
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are contaminated with measurement errors,
any estimate of C or Cs will also contain
some statistical error. Whereas actual light-
curve measurement errors may arise from
systematic sources (e.g., imperfect removal
of sky background, intermittent cirrus,
etc.), as well as from photon-counting sto-
chastic errors, one can always compute an
"effective standard deviation" in the over-
all noise due to all sources. Distortion
caused by any given noise level will in-
crease as the rotational-phase sampling in-
terval increases.

We have investigated the effects of noise
and sampling rate for five of the model as-
teroids (objects No. 1, 4, 8, 11, and 15) used
in Section IV.B. As shown in Fig. 4, those
five shapes span a large region in -fQc vs 1*
space." Here, to focus on statistical
sources of error, we assume that all ideal
conditions are satisfied. Propagation of sta-
tistical error has been modeled by generat-
ing a lightcurve for a given model asteroid,
using a random number generator to pro-
duce Gaussian noise samples, scaling the
standard deviation to some fraction a- of the
asteroid's mean brightness, adding the
scaled noise to the lightcurve, and then esti-
mating C or Cs. The entire procedure is
repeated to build up an ensemble of five
profiles, each containing error introduced
by a different realization of the same noise-
generating random process. We repeated
this exercise for two noise levels (o- = 1 and
3%), two sampling intervals (AO 30 and
90), and four solar phase angles (¢ = 00, 50,
10°, and 200), for each of the five model
asteroids. Our choices of noise level and
sampling interval span the values corre-
sponding to many published asteroid light-
curves and let one gauge the severity of sta-
tistical error sources in the inversions to be
presented in Section V.

Figure 9 superposes the five estimates of
C for each choice of the three parameters
(a-, AO, X) and also lists the five-profile
mean values of the error distance flE, the
noncircularity Qc, and the breadth ratio ,8*,
using the same format as in Fig. 6. Note the

trade-offs between noise level and sampling
rate, and the dependence of flE on solar
phase angle. Tripling the noise level gener-
ally increases the error distance more dra-
matically than does tripling the sampling in-
terval, but there is some coupling between
a- and AO, with the negative effect of in-
creasing AO felt more severely at the high
noise level than at the low noise level.

The accuracy of C increases with in-
creasing solar phase angle because noise
"masquerading" as odd-harmonic energy
in a low-+ lightcurve gets "blown up" via
Eq. (1) into very strong odd harmonics in
C. It should not surprise us that reliable
estimation of C's odd harmonics is intrinsi-
cally difficult at low solar phase angles; re-
call that under the ideal conditions, the
manifestation of C's odd harmonics as odd
harmonics in the lightcurve is nil at opposi-
tion and grows slowly with |4|. (See Fig. 3
and Section III.) Note that overestimation
of C's noncircularity appears correlated
with the error distance for the more sym-
metric shapes, but that the noncircularity is
fairly immune to noise for the shapes (ob-
jects No. 4 and 11) containing healthy odd
harmonics.

Estimation of the symmetrized mean
cross section (i.e., of C's even harmonics)
is accurate even for the higher noise level
and coarser sampling interval. This situa-
tion reflects the intrinsic accessibility of
C's even harmonics, regardless of 4. Con-
sequently, 13*, whose value depends only
on C's even harmonics, is estimated quite
reliably for every one of our simulations.

Since systematic sources of error in C
can be severe, it is important that statistical
sources of error be minimized for light-
curves acquired to constrain asteroid
shapes. A conservative rule of thumb might
be to try to keep o- at or below 1%. At that
level, statistical sources of error in C seem
small compared to distortion introduced by
violation of Conditions EVIG and/or GEO.
(In the following section, we apply convex-
profile inversion to lightcurves whose noise
levels range from 0.6 to 4% and average
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FIG. 9. Propagation of statistical error for five model asteroids. This figure is in the same format as
Fig. 6. Each box shows results of simulations for a particular model. The model's mean cross section
and symmetrized mean cross section are shown above the horizontal bar. Below the bar are estimates
of those quantities from inversion of noisy lightcurves generated under ideal conditions at solar phase
angle k, noise level o-, and rotational-phase sampling interval AO. ((, is estimated at opposition and C
is estimated at the three nonzero values of q>.) Five cross section estimates, corresponding to five
different realizations of the noise-generating random process, are superposed for each choice of X, C-,
AO. Five-profile mean values of noncircularity fic, breadth ratio A*, and error distance "E are listed.
See text.
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FIG. 9-Continued.

-1.5%. Our simulations suggest that for
such noise levels, statistical error in an esti-
mate of the breadth ratio will not exceed a
few percent of 83*, while that in an estimate
of the noncircularity will typically be about

I distance unit or less. The bias in an esti-
mate of ,B* will usually be negligible, but the
bias in an estimate of C's fC obtained at
low solar phase angle can be several dis-
tance units at the higher noise levels.)

a= 1%

a =3%

a= 1%
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AO = 3° AO 90

FIG. 9-Continued.

The sampling interval is less critical, es-
pecially at low noise levels and large solar
phase angles. However, simulations not
presented here indicate that gaps in rota-
tional-phase coverage as large as a few tens
of degrees can increase [IE by several tens
of percent. For this reason, it seems pru-
dent to interpret the parameter AO in the
Fig. 9 simulations as the minimum interval
between any two data points.

VI. APPLICATIONS

In this section, we present results of ap-
plying convex-profile inversion to selected
asteroids, beginning with lightcurves for
which prior knowledge of the asteroid's
pole direction indicates viewing-illumina-
tion geometry not far from equatorial. Note
that for all lightcurves shown below, we
plot the brightness in linear units scaled so
that the average brightness is near unity;
accordingly, we express Am in linear units
instead of magnitudes.

To help guide interpretation of our
results, each of the figures referred to in

this section includes values for several
goodness-of-fit statistics. If the ideal condi-
tions were satisfied perfectly, then the (un-
constrained) Fourier model 5 for the light-
curve data y would be the same as the
(constrained) Fourier model § correspond-
ing to C. (See Section III.) Ostro and Con-
nelly (1984) describe a test of the null hy-
pothesis, Ho, that the vector of Fourier
coefficients for § is a statistically acceptable
estimate of the Fourier vector for the
"true" lightcurve. This "variance ratio"
test compares an estimate of c-2 obtained
from the residuals between the data and y
to an estimate obtained from the residuals
between the data and 5. Let M be the num-
ber of Fourier harmonics and L the number
of data points, and let us assume that the
errors in y are independent, identically dis-
tributed, zero-mean, Gaussian random
variables. Then the following goodness-of-
fit statistic, w1, is distributed as
under the null hypothesis (Plackett 1960,
p. 52 ff.):

w, = (R - OWV2

a = 1%

.-3%

C 15

11 
9 89 9 89
2 50 250

100 5 ° lo 200 0o 50 0o, 200

n I 55 537 2 46 1 36 6O 2 00 6 64 365 1 93
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where
R = (y - §)T(y - §)(y - y)T(y -
v, = 2M + 1
V2 = L-vj .

We can reject Ho at the 100(1 - a)% confi-
dence level whenever w1 > FV1 V2.^A For ex-
ample, Ho can be rejected at the 99% confi-
dence level if w, > F, 1, 2,001 . For all
inversions in this paper, M = 10, L > 45,
and F 1,,12 ,0. 01 < 3.

In the figures below, we give up to three
goodness-of-fit statistics for each inversion.
The first, wI, tests Ho for y, as just de-
scribed; if w, exceeds 3, we can safely re-
ject Ho. The second, w2, tests the same hy-
pothesis, but for the lightcurve model Y's
corresponding to C,. The third, W3, tests the
same hypothesis as w2, but assumes that the
correct lightcurve model is y, instead of y as
for w, and w2. If the third w statistic is >3,
then ywe can safely reject the hypothesis
that C, provides as good a fit to the light-
curve data as does C. Whenever we esti-
mate C, we also give the "symmetrization
distance" fQs between C and C,.

A. Objects with Published Pole Directions
15 Eunomiac. Figure 10 shows C (solid

profile) and C, (dotted profile) estimated
from lightcurves at solar phase angles equal
to -12° and -21°. The signs of / assume
retrograde rotation, as deduced by authors
cited in the figure caption. Using Magnus-
son's (1986) values for the ecliptic longitude
(106° + 50) and latitude (-730 + 10°) of
Eunomia's north pole, we calculate (OE, 5S)
equal to (19°, 180) and (80, -2°) for the two
Eunomia curves.

The figure shows that the values of the
elongation /3* and the noncircularity fQc for
the two estimates of C vary by less than
10%. If the ideal conditions held perfectly
and if the lightcurves were free of noise,
then C and those two shape descriptors
would be independent of solar phase angle.
The ideal conditions certainly are not satis-

fied perfectly and the lightcurves are not
noiseless, but the similarity of the profiles
obtained from the two lightcurves lends
confidence to their validity and is consis-
tent with the net effect of the violations of
the ideal conditions being fairly small. Also
note that the fractional variation in the esti-
mates of 13* (which pertains to the aster-
oid's mean cross section) is half that in the
estimates of Am (which pertains to the
lightcurves); see the discussion in Section
IV.B.

The fact that the values of w, and w2 ex-
ceed 3 is interpretable as very strong evi-
dence for violation of ideal conditions.
However, caution is advised even when
those statistics are near unity, since viola-
tions of ideal conditions might conspire to
produce a lightcurve yielding a good match
between § and the lightcurve data, but a C
that nevertheless is inaccurate. By the
same token, it is conceivable that a mean
cross section estimate providing a poor fit
to the data might be physically valid. Given
these various possibilities, it clearly is de-
sirable to estimate an asteroid's mean cross
section at a variety of solar phase angles.

Figure 10 also shows the weighted aver-
age of the two estimates of Eunomia's
mean cross section, calculated by summing
the statistically weighted vector of Fourier
coefficients for the radius-of-curvature
functions for the individual profiles, with
the profiles' relative rotational phase cho-
sen to maximize the cross correlation of the
radius-of-curvature functions. This exam-
ple demonstrates how convex-profile inver-
sion can combine the shape information
contained in any number of independent
lightcurves, perhaps taken at a variety of
solar phase angles and/or during different
apparitions.

19 Fortuna. Figure II shows C for two
lightcurves obtained by Weidenschilling et
al. (1987) for 19 Fortuna, and their
weighted average. This asteroid's light-
curves have peak-to-valley amplitudes
close to 0.25 mag, independent of ecliptic
longitude, suggesting that the asteroid-cen-
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FIG. 10. Estimates of C (the solid profile) and C. (the dotted profile) for lightcurves obtained for
asteroid 15 Eunomia at solar phase angle S = -12° (Fig. 8 of Groeneveld and Kuiper 1954) and at b =
-210 (Fig. 14 of van Houten-Groeneveld and van Houten 1958). All the lightcurves in this paper are
plotted on a linear scale, with the average brightness set to unity. In the lightcurve plots, the large
symbols are the data, the solid lightcurve 9 was derived from the unconstrained vector of Fourier
coefficients i, andzthe dotted lightcurve y was derived from the constrained Fourier coefficients (x)
corresponding to C.On the right, Am is the ratio of y's maximum to its minimum; f3* is the breadth
ratio (the same for C and Ci); flc is the noncircularity of the profile drawn with a solid curve, here C;
and fs is the distance between C and C.. To the right of "w" are values for three statistics that let us
test hypotheses described in the text. Briefly, since the first statistic (wl) exceeds 3, we can safely state
that the lightcurve corresponding to the mean cross section estimate is not a good fit to the data. Since
the second statistic (W2) exceeds 3, we can make the same statement about the symmetrized mean
cross section. Since the third statistic (W3) exceeds 3, we can state that the difference between the
lightcurves corresponding to C and C. is significant, i.e., that thze odd harmonics in y are statistically
significant. (In some of the subsequent figures we just estimate C., and in those we do not give values
for f1s, wl, or W3.) In the middle of this figure are the weighted average of the two individual estimates
of C, its symmetrization, and relevant shape descriptors. Note the distances between the cross section
estimates.

tered declinations of Earth and the Sun are 12 and 13 show results of inverting an oppo-
within a few tens of degrees of zero. sition lightcurve and a nonopposition light-

20 Massalia and 129 Antigone. Figures curve for each of these large, main-belt as-
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FIG. 11. Similar to Fig. 10, but for lightcurves of asteroid 19 Fortuna obtained by Weidenschilling et
al. (1987).

teroids. For each object, Magnusson's
(1986) pole position estimates are consis-
tent with the asteroid-centered declinations
of the Sun and Earth being within a few
tens of degrees of zero during the observa-
tions.

If an estimate of C from a nonopposition
lightcurve were accurate, then its symme-
trization would provide an estimate of C.
that would also be accurate and hence
would resemble an estimate of C. from an
opposition lightcurve. We expect C to be
more reliably estimated from an opposition
lightcurve because the scattering is likely to
be closer to geometric at small (P.

For Massalia, the two estimates of CS are
nearly identical (fl = 2.33), lending confi-

dence to their mutual validity. The poor
goodness of fit for the inversion of the op-
position lightcurve is disconcerting, but
note that the residuals are spread out fairly
uniformly over 360° of rotational phase.

For Antigone, the two estimates of Cs are
6.20 distance units apart-they are defi-
nitely different-and the residuals are se-
vere, so the cross section estimates are
likely to contain significant systematic er-
rors. The presence of a strong first har-
monic in the lightcurve taken only 70 from
opposition and, if Magnusson's pole direc-
tion is correct, at (8 E, 5s) equal to (17°, 12°)
is interpretable as evidence for a nonuni-
form albedo distribution.

624 Hektor. Figure 14 shows Cs esti-

2 3
7 05

= a, -

10 -
I
I

T C -
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FIG. 12. Inversion of lightcurves obtained for 20 Massalia by Gehrels (1956, composite of his Figs. 4
and 5) at ) = 13° and by Barucci et al. (1985) at 4 = 20. Note the resemblance between the symmetriza-
tion (dotted profile) of our estimate of C from the nonopposition lightcurve and the estimate of C,
from the opposition lightcurve. See Fig. 10 caption.
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FIG. 13. Convex-profile inversion of lightcurves of asteroid 129 Antigone obtained by Barucci et al.
(1985) at 4 = 70 and by Scaltriti and Zappala (1977) at 4) -160. See Fig. 10 caption, Fig. 12, and text.
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FIG. 14. Top: Estimate of the symmetrized mean cross section of asteroid 624 Hektor for a near-
opposition lightcurve obtained by Dunlap and Gehrels (1969). Middle: Estimation of 44 Nysa's symme-
trized mean cross section from a lightcurve obtained by di Martino et al. (1987). Bottom: Estimates of
C and C, for 1685 Toro, from inversion of a lightcurve obtained by Dunlap et al. (1973). See text and
Fig. 10 caption.

mated for 624 Hektor from a lightcurve ob-
tained at 0 = 4° by Dunlap and Gehrels
(1969). The pole directions estimated for
this Trojan asteroid by those authors (and
more recently by ZappalA and Knezevi6
1984, Pospieszalska-Surdej and Surdej
1985, Magnusson 1986) indicate that 6 E and
8s have absolute values less than 10°. The
constancy of Hektor's color indices with
rotational phase (Dunlap and Gehrels
1969), the absence of odd harmonics in the
lightcurve, and the low value of W2 concur
in supporting the reliability of our estimate

of C Note that the profile has ,3* = 2.5 and
is distinctly nonelliptical. Since the mean
cross section of an ellipsoid rotating about a
principal axis is an ellipse, our results sug-
gest that neither the asteroid nor its convex
hull are ellipsoids. On the other hand, our C
is quite consistent with many other models
for Hektor's three-dimensional shape, in-
cluding a cylinder with rounded ends
(Dunlap and Gehrels 1969), a dumbbell
(Hartmann and Cruikshank 1978), and vari-
ous binary configurations (Weidenschilling
1980). Of course, in making these state-

36eISe
ROTATIONAL PHASE

18 3GR
ROTATIONAL PHASE
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ments, we ignore effects of possible small
violations of the ideal conditions.

44 Nysa. As noted by di Martino et al.
(1987) and Magnusson (1986), this aster-
oid's pole is relatively well known. The in-
verted lightcurve (middle row of Fig. 14),
from di Martino et al. (1987), was taken at a
solar phase angle of 8.50, under nearly
equatorial viewing/illumination geometry.
The pole estimate yields 5E = 90 and 5s =
30, so the longitudinal separation of the sub-
Earth and sub-Sun points is only about 50,
and our "leverage" in estimating C's odd
harmonics is marginal at best. On the other
hand, our estimate of Cs probably is reli-
able. It is interesting that our estimate,
/3* = 1.41, for the elongation of Nysa's
mean cross section is within several per-
cent of values derived for a model ellip-
soid's equatorial axis ratio from analysis
of a multi-apparition lightcurve data set
(Pospieszalska-Surdej and Surdej 1985,
Magnusson 1986).

1685 Toro. We assumed the pole direc-
tion (200°, 550) quoted by Dunlap et al.
(1973) in inverting their July 1972 lightcurve
data (bottom row of Fig. 14), and the nega-
tive sign of 4 corresponds to direct rota-
tion. The fit is excellent. Note that C is
much less elongated than one might infer
from the lightcurve's large amplitude. Also
note that whereas fQ = 2, so Ce is not far
from C, w2 and W3 are each much greater
than 3. That is, the lightcurve's odd har-
monics are prominent while C's are not.
There is no discrepancy here; odd harmon-
ics in shape generate increasingly large odd
harmonics in a lightcurve as the solar phase
angle increases. [See (I) and Fig. 3.]

B. Objects with Unknown Pole Directions
Figure 15 shows C and/or Ct for objects

for which pole-direction estimates are lack-
ing. We present these profiles because the
goodness-of-fit statistics are small, or in
some cases because the profiles are inter-
esting, or simply to illustrate the mapping
from lightcurve space to profile space, e.g.,
the relation [Eq. (1) and Fig. 3] between the

harmonic structure of a lightcurve and that
of a mean-cross-section estimate. Unless
otherwise noted, all estimates of C assume
that 4)'s sign is positive; the profile obtained
for a negative sign generally is similar, with
nearly the same /3* and fic as the profile
shown.

36 Atalante. As di Martino et al. (1987)
point out, even though this lightcurve's am-
plitude is similar to that in lightcurves ob-
tained 700 of longitude away, the viewing/
illumination geometry might not neces-
sarily be equatorial. The fit is awful (w, is
huge), with strong, positive residuals for
half a cycle but strong negative residuals
for the other half. This situation is consis-
tent with a hemispheric albedo asymmetry,
so perhaps this object should be targeted
for polarimetry or multicolor photometry.

60 Echo. The fit of the model lightcurve
corresponding to C, to Zeigler and Flor-
ence's (1985) data is okay, with no major
residuals except at the primary maximum.

61 Danae. To the best of our knowledge,
this object has not been observed photo-
metrically since Wood and Kuiper (1963)
acquired this lightcurve. At such a small
solar phase angle a mean cross section esti-
mate is probably unreliable, and we show C
primarily as an example of a shape with a
large noncircularity.

69 Hesperia. The residuals are large, sug-
gesting violation of ConditionA EVIG and/or
Condition GEO. Compare Cs to Danae's,
which has similar values of the shape de-
scriptors /* and Qc.

118 Peitho. This Stanzel and Schober
(1980) opposition lightcurve has an unusu-
ally strong fourth harmonic, which mani-
fests itself in the rectangular appearance of
Cs. The large residuals could be due to al-
bedo heterogeneities and/or to non-equato-
rial viewing/illumination geometry.

164 Eva. The large value of w, is a bit
misleading here. The number of points plot-
ted in the Schober (1982) lightcurve is huge,
and our digitization of it yielded more than
700. With this many data points the F-ratio
test becomes extremely sensitive. The
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FIG. 15. Estimates of C and/or C. for asteroids lacking published estimates of pole direction. See
text and Fig. 10 caption. Sources of the lightcurves are 36 Atalante (di Martino et al. 1987, Fig. 4), 60
Echo (Zeigler and Florence 1985, Fig. 4), 61 Danae (Wood and Kuiper 1963, Fig. 7), 69 Hesperia
(Poutanen et al. 1985, Fig. 4), 118 Peitho (Stanzel and Schober 1980, Fig. 1), 164 Eva (Schober 1982,
Fig. 3), 246 Asporina (Harris and Young 1983, Fig. 29), 270 Anahita (Harris and Young 1980, Fig. 18),
434 Hungaria (Harris and Young 1983, Fig. 38), 505 Cava (Harris and Young 1985, Fig. 2), 704
Interamnia (Lustig and Hahn 1976, Fig. 11), 739 Mandeville (ZappalA et al. 1983, Fig. 28), 1173
Anchises (French 1987), 1627 Ivar (Hahn et al. 1987), 2156 Kate (Binzel and Mulholland 1983, Fig. 18).

model lightcurve y corresponding to our
mean cross section estimate actually is very
slightly lower than the unconstrained model
lightcurve 5 at each of the extrema except
the deepest minimum, where it is slightly
higher than 5.

246 Asporina. The Harris and Young
(1983) lightcurve has only 65 points, so the
F-ratio test is not very sensitive to the dif-

ference between y and 5. Contrast with the
situation for 164 Eva.

270 Anahita. Differences between the
shapes of the two peaks (i.e., odd harmon-
ics in the lightcurve) cause the large value
of W2.

434 Hungaria. Despite the large residuals
over rotational phases from 2500 to 3600,
this inversion demonstrates that, at large
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FIG. 15-Continued.

solar phase angles, the breadth ratio /3* is
superior to Am as an elongation measure.

505 Cava. The lightcurve from Harris
and Young (1985) is composited from data
taken at phase angles ranging from 100 to
25°, and we use an average value of 150 for
the inversion. The fit of to the data is good
except near 4 2700; readers might care to
speculate about the source of this "fea-
ture."

704 Interamnia. The fit of y to the light-
curve obtained by Lustig and Hahn (1976)
is not good, but the three pairs of extrema
are replicated, and we show this inversion
because C offers a simple explanation for
the existence of three minima with different

depths: The three pairs of extrema arise be-
cause C resembles an equilateral triangle,
while differences between the minima arise
because the triangle's vertices have differ-
ent "sharpnesses."

739 Mandeville. The slightly different
shapes of the minima in this Zappala et al.
(1983) fightcurve are the source of the odd
harmonics in C, which provides a decent fit
to the data and, in view of the values of fis
and W3, a significantly better one than does
Cs.

1173 Anchises. This opposition light-
curve obtained by French (1987) yields an
estimate of Cs which is notable for its elon-
gation (/3* = 1.6) and its interesting shape,
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FIG. 15-Continued.

which has a weak sixth harmonic. The
lightcurve has a significant first harmonic
(note the poor fit of y to the lightcurve max-
ima), which could arise from a nonequato-
rial view of a nonaxisymmetric shape or, if
the shape is axisymmetric and the aspect is
equatorial, from a heterogeneous albedo
distribution.

1627 Ivar. This lightcurve from Hahn et
al. (1987) is a composite of data taken dur-
ing September 1985 at solar phase angles
between 180 and 330; a value of 250 was
used in the inversion. Radar data (Ostro et
al. 1986) and the progression of lightcurve
amplitude during the 1985 apparition (A.
W. Harris, private communication) suggest

that the aspect during September was
closer to equatorial than during the closest
approach to Earth in July, but that Ivar is
actually more elongated than one would in-
fer from any of the lightcurve data or from
our estimate of C.

2156 Kate. Our estimate of this small
main-belt asteroid's mean cross section is
elongated and highly noncircular. The
worst residuals are confined to the minima.

VIL. CONCLUSIONS

This paper has been an attempt to formu-
late and apply a comprehensive framework
for using a lightcurve to constrain an aster-
oid's shape. We have seen that convex-pro-
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file inversion builds on the canonical work
of Russell by (i) identifying the mean cross
section C as the optimal shape constraint
available from a lightcurve, (ii) defining the
differences between the potential informa-
tion content of opposition lightcurves and
that of nonopposition lightcurves, and (iii)
specifying the conditions that determine the
accessibility of that information.

The methodology for estimating C and Cs
was introduced by Ostro and Connelly
(1984), and here we have tried to assess
principal sources of systematic and statisti-
cal error. Perhaps the most severe obstacle
to estimating the mean cross section stems
from violation of Condition GEO. How-

ever, it is encouraging that our simulations
suggest that salient characteristics of C re-
semble those of C rather closely for equato-
rial lightcurves obtained at solar phase an-
gles near 20°, at least for the simplistic
shapes we examined. When the viewing/il-
lumination geometry is as much as a few
tens of degrees from equatorial, the validity
of estimates of C or Cs should be consid-
ered suspect, and simulations like those in
Section IV.A can be used to gauge the se-
verity of distortion. (On the other hand,
even when C is apparently biased, it re-
mains a visual representation of the light-
curve in a language befitting the light-
curve's intrinsic information content.)
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We cannot hope to escape the reality that
a lightcurve is determined by the viewing/
illumination geometry and the surface's
light-scattering behavior as well as by the
three-dimensional shape. Hopefully, we
have demonstrated the value of convex-
profile inversion as a tool for assessing the
relative roles of each of these factors.

Since shape effects are inextricably in-
volved in the interpretation of any disk-
integrated observations, including those
meant to probe physical properties other
than body shape, we conjecture that con-
vex-profile inversion will prove useful in
"removing" shape effects in studies de-
signed to constrain those properties. For

example, one could apply convex-profile
inversion to analysis of an opposition light-
curve to constrain the average longitudinal
dependence of an asteroid's albedo distri-
bution, as follows. If Condition EVIG is
satisfied close to opposition, where Condi-
tion GEO is most likely to be satisfied, we
can use Russell's Fourier tests to seek evi-
dence for a nonuniform albedo distribution.
If the opposition lightcurve has a first har-
monic but no higher odd harmonics, we
could estimate Cs with confidence and at-
tribute residuals between the lightcurve and
Cs's breadth function to albedo variegation.
Then one might try to account for those
residuals in terms of a nonuniform, two-di-
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mensional model asteroid, i.e., by varying
the albedos of each side of the polygonal
estimate of Cs obtained from convex-profile
inversion. This exercise would collapse
both the three-dimensional shape and the
albedo distribution on the three-dimen-
sional surface into two-dimensional aver-
ages, and as such could help to convey the
range of possible configurations for the as-
teroid. Of course, from R3 and R4, we can-
not expect lightcurves to reveal which of
the infinite number of admissible configura-
tions is correct. Unique models of either
shape or of the distribution of surface prop-
erties simply cannot be obtained from disk-
integrated measurements.

If a reliable estimate of an asteroid's
mean cross section were available, one
could substitute C for Cs in the above exer-
cise. It might also be interesting to incorpo-
rate Hapke's scattering formalism into this
"two-dimensional modeling," as in Section
IV.B, to explore the range of possible val-
ues for Hapke parameters and perhaps to
model effects of surface heterogeneities. At
this level of modeling, however, even two-
dimensional simplifications cannot be ex-
pected to yield unique solutions. Still, these
approaches might help to separate shape
from compositional variations in analysis of
multispectral lightcurves, from regolith
thermal characteristics in analysis of ther-
mal-infrared lightcurves, or from surface
microstructure in analysis of asteroid
"phase functions." The last possibility in-
volves the observation that brightness gen-
erally increases as zero phase angle is
approached-the opposition effect. In
principle, one can use Hapke's scattering
theory or any other applicable formalism
(e.g., Lumme and Bowell 1981, Goguen
1981) to model phase curves measured for
asteroids and then use values of the rele-
vant free parameters to constrain such sur-
face characteristics as porosity. However,
any such model necessarily makes some as-
sumption about asteroid shape, and con-
vex-profile inversion offers a powerful tool
for dealing with shape effects.

In its current incarnation, convex-profile

inversion is not readily applicable to data
sets consisting of many lightcurves taken
under a variety of (nonequatorial) viewing/
illumination geometries. To accommodate
this most common kind of lightcurve data
set, one must parameterize aspects of the
asteroid's shape not described by the mean
cross section. Satisfactory accomplishment
of this task could greatly increase the num-
ber of asteroids for which mean cross sec-
tions can be accurately estimated and might
enhance the value of multi-lightcurve con-
straints on asteroid pole directions.
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